skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wojnarski, Mariusz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundEstimating malaria risk associated with work locations and travel across a region provides local health officials with information useful to mitigate possible transmission paths of malaria as well as understand the risk of exposure for local populations. This study investigates malaria exposure risk by analysing the spatial pattern of malaria cases (primarilyPlasmodium vivax)in Ubon Ratchathani and Sisaket provinces of Thailand, using an ecological niche model and machine learning to estimate the species distribution ofP. vivaxmalaria and compare the resulting niche areas with occupation type, work locations, and work-related travel routes. MethodsA maximum entropy model was trained to estimate the distribution ofP. vivaxmalaria for a period between January 2019 and April 2020, capturing estimated malaria occurrence for these provinces. A random simulation workflow was developed to make region-based case data usable for the machine learning approach. This workflow was used to generate a probability surface for the ecological niche regions. The resulting niche regions were analysed by occupation type, home and work locations, and work-related travel routes to determine the relationship between these variables and malaria occurrence. A one-way analysis of variance (ANOVA) test was used to understand the relationship between predicted malaria occurrence and occupation type. ResultsThe MaxEnt (full name) model indicated a higher occurrence ofP. vivaxmalaria in forested areas especially along the Thailand–Cambodia border. The ANOVA results showed a statistically significant difference between average malaria risk values predicted from the ecological niche model for rubber plantation workers and farmers, the two main occupation groups in the study. The rubber plantation workers were found to be at higher risk of exposure to malaria than farmers in Ubon Ratchathani and Sisaket provinces of Thailand. ConclusionThe results from this study point to occupation-related factors such as work location and the routes travelled to work, being risk factors in malaria occurrence and possible contributors to transmission among local populations. 
    more » « less
  2. During infections with the malaria parasitesPlasmodium vivax, patients exhibit rhythmic fevers every 48 h. These fever cycles correspond with the time the parasites take to traverse the intraerythrocytic cycle (IEC). In otherPlasmodiumspecies that infect either humans or mice, the IEC is likely guided by a parasite-intrinsic clock [Rijo-Ferreiraet al.,Science368, 746–753 (2020); Smithet al.,Science368, 754–759 (2020)], suggesting that intrinsic clock mechanisms may be a fundamental feature of malaria parasites. Moreover, becausePlasmodiumcycle times are multiples of 24 h, the IECs may be coordinated with the host circadian clock(s). Such coordination could explain the synchronization of the parasite population in the host and enable alignment of IEC and circadian cycle phases. We utilized an ex vivo culture of whole blood from patients infected withP. vivaxto examine the dynamics of the host circadian transcriptome and the parasite IEC transcriptome. Transcriptome dynamics revealed that the phases of the host circadian cycle and the parasite IEC are correlated across multiple patients, showing that the cycles are phase coupled. In mouse model systems, host–parasite cycle coupling appears to provide a selective advantage for the parasite. Thus, understanding how host and parasite cycles are coupled in humans could enable antimalarial therapies that disrupt this coupling. 
    more » « less